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Abstract 

Objectives: The coronavirus disease 2019 (COVID-19) has caused a crisis worldwide. 

Amounts of efforts have been made to prevent and control COVID-19’s transmission, 

from early screenings to vaccinations and treatments. Recently, due to the spring up of 

many automatic disease recognition applications based on machine listening techniques, 

it would be fast and cheap to detect COVID-19 from recordings of cough, a key symptom 

of COVID-19. To date, knowledge on the acoustic characteristics of COVID-19 cough 

sounds is limited, but would be essential for structuring effective and robust machine 

learning models. The present study aims to explore acoustic features for distinguishing 

COVID-19 positive individuals from COVID-19 negative ones based on their cough 

sounds. 

Methods: By applying conventional inferential statistics, we analyse the acoustic 

correlates of COVID-19 cough sounds based on the COMPARE feature set, i. e., a 

standardised set of 6,373 acoustic higher-level features. Furthermore, we train automatic 

COVID-19 detection models with machine learning methods and explore the latent 

features by evaluating the contribution of all features to the COVID-19 status predictions. 
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Results: The experimental results demonstrate that a set of acoustic parameters of cough 

sounds, e. g., statistical functionals of the root mean square energy and Mel-frequency 

cepstral coefficients, bear essential acoustic information in terms of effect sizes for the 

differentiation between COVID-19 positive and COVID-19 negative cough samples. Our 

general automatic COVID-19 detection model performs significantly above chance level, 

i. e., at an unweighted average recall (UAR) of 0.632, on a data set consisting of 1,411 

cough samples (COVID-19 positive/negative: 210/1,201).  

Conclusions: Based on the acoustic correlates analysis on the COMPARE feature set and 

the feature analysis in the effective COVID-19 detection approach, we find that several 

acoustic features that show higher effects in conventional group difference testing are 

also higher weighted in the machine learning models. 
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Introduction 

A novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) caused a disease that quickly spread worldwide at the end of 2019 and the 

beginning of 2020. In February 2020, the World Health Organization (WHO) named the 

disease COVID-19 and shortly after that declared the COVID-19 outbreak a global 

pandemic. Globally, as of February 2022, more than 434,150,000 confirmed cases of 

COVID-19, including more than 5,940,000 deaths were reported to the World Health 

Organization.
1
 

Both the presenting symptoms and the symptom severity vary considerably from patient 

to patient, ranging from asymptomatic infections or a mild flu-like clinical picture to 

severe illness or even death. Commonly reported symptoms of COVID-19 include (1) 

respiratory and ear-nose-throat symptoms such as cough, shortness of breath, sore throat 

and headache, (2) systemic symptoms such as fever, muscle pain, and weakness, as well 

as (3) loss of smell and/or taste.
2
 Less common ear-nose-throat symptoms associated with 

COVID-19 are pharyngeal erythema, nasal congestion, tonsil enlargement, rhinorrhea, 

and upper respiratory tract infection.
3
 

 

Diagnostic approaches. 

The early detection of a COVID-19 infection in a patient is essential to prevent the 

transmission of the virus to other hosts and provide the patient with appropriate and early 

treatment. A series of laboratory diagnosis instruments have been proposed to test for 
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COVID-19, e. g., computed tomography (CT), real-time reverse transcription polymerase 

chain reaction (rRT-PCR) tests, and serological methods.
4,5

 CT and X-ray detect COVID-

19 based on chest images.
6-9

 An rRT-PCR test focuses on analysing the virus’ ribonucleic 

acid (RNA) and synthesised complementary deoxyribonucleic acid (cDNA) from a 

nasopharyngeal swab and/or an oropharyngeal swab.
10

 Serological instruments measure 

antibody responses to the corresponding infection and confirm the COVID-19 status.
5
 

However, the instruments mentioned above are costly and/or not always available, since 

they can only be conducted by professionals and require special equipment and a certain 

time of analysis. Even though rapid antigen and molecular tests are more and more used 

by non-professionals/the test person him- or herself to quickly detect COVID-19, e.g. in 

everyday life settings, they result in a huge amount of waste due to the testing kits as well 

as their packing. Thus, it is essential to develop low-cost, real-time, easy-to-apply, and 

eco-friendly screening instruments that are ready-to-use everyday and basically 

everywhere. 

 

Disease detection based on bioacoustic signals. 

A promising approach for a screening tool fulfilling these requirements could be based on 

bioacoustic signals such as speech sounds or cough sounds.
11-14

 Several studies have 

reported acoustic peculiarities in the speech of patients who have diseases associated with 

symptoms affecting anatomical correlates of speech production, such as bronchial 

asthma
15,16

 or vocal cord disorders.
17-19

 Differences in various acoustic parameters were 

also found in recent studies comparing speech samples of COVID-19 positive and 

COVID-19 negative individuals.
20,21

 Motivated by acoustic voice peculiarities found for 

various diseases, machine learning has been increasingly applied to automatically detect 

medical conditions from voice, such as upper respiratory tract infection
22

, Parkinson’s 

disease
23

, and depression
24

. Recent studies on the automatic detection of COVID-19 from 

speech signals achieved promising results through both traditional machine learning
13,25-

27
 and deep learning techniques

13,28,29
. Although research on the automatic detection of 

diseases based on speech is rapidly expanding, it faces a number of challenges in terms of 

algorithm generalisability and potential application in real-world scenarios. These 

challenges include gender and age distribution, the presence of different mother tongues, 

dialects, sociolects, or cognitive aspects such as individual speech-language and reading 

competence that may affect various acoustic parameters.
30-36

 Studies on COVID-19 face 

additional challenges related to the fact that COVID-19 is a relatively new and not yet 

well understood disease with a wide range of symptoms and divergent symptom 

severity.
37,38

 Studies need to consider the symptom heterogeneity of COVID-19 positive 

patients and the fact that many symptoms may also occur in other diseases such as 

bronchial asthma or flu. Therefore, it is essential to consider the inclusion of patients with 

COVID-19-like symptoms but other diagnoses into COVID-19 negative study groups. 
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In contrast to speech, the acoustic parameters of cough sounds are less dependent on 

language-related aspects. Therefore, systems based on voluntarily produced cough 

sounds may be more easily applicable to a broader target group than speech-based 

systems. Cough is not only a promising bioacoustic signal since it reflects a body 

function performed by all people regardless of their culture or language competence, but 

is also one of the most prominent symptoms of COVID-19 and is closely related to the 

lung primarily affected by COVID-19. 

 

Physiology of cough. 

Cough is an important defence mechanism of the respiratory system as it cleans the 

airways through high-velocity airflow from accidentally inhaled foreign materials or 

materials produced internally in the course of infections. A cough is composed of an 

inspiratory, a compressive, and an expiratory phase.
39

 It is initiated with the inspiration of 

air (about 50% of vital capacity), followed by a prompt closure of the glottis and the 

contraction of abdominal muscles and other expiratory muscles. This process allows the 

compression of the thorax and the increase of subglottic pressure. The next phase of a 

cough constitutes the rapid opening of the glottis resulting in a high-velocity airflow 

(peak expiratory airflow phase), followed by a steady-state airflow (plateau phase) for a 

variable – voluntarily controllable – duration.
40,41

 The optional final phase is the 

interruption of the airflow due to the closure of the glottis.
42

 Cough can be classified into 

two broad categories: wet/productive cough with sputum excreted and dry/non-

productive cough without sputum.
43

 Cough sounds were found to vary significantly due 

to a person’s body structure, sex, and the kind of sputum.
43

 For example, the sound 

spectrograms of wet coughs contain clear vertical lines that appear once continuous 

sounds break off. This manifests in audible interruptions. Moreover, the duration of the 

second cough phase was longer for wet coughs compared to dry coughs, whereas the 

durations of the first and third cough phase did not differ significantly. Also Hashimoto 

and colleagues
44

 revealed that the ratio of the duration of the second phase to the total 

cough duration was significantly higher for wet coughs than for dry coughs. Chatrzarrin 

and colleagues
45

 compared acoustic characteristics of wet and dry coughs and found that 

the number of peaks of the energy envelope of the cough signal and the power ratio of 

two frequency bands of the second expiratory phase of the cough signal significantly 

differentiated between the two cough types. Wet cough sounds presented with more 

peaks and a reduced frequency band power ratio, indicating more spectral variation as 

compared to dry cough sounds.   

 

Disease detection from cough sounds. 

A number of researchers have been interested in potential acoustic differences between 

voluntarily produced cough sounds of patients with pulmonary diseases and healthy 

individuals. Knocikova and colleague
46

 compared the cough sounds of patients with 
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chronic obstructive pulmonary disease (COPD), patients with bronchial asthma, and 

healthy controls. They found that patients with COPD had the longest cough duration and 

the highest power among the three groups. Higher frequencies were detected in the cough 

sounds of the bronchial asthma group compared with the COPD group. Furthermore, in 

the bronchial asthma group, the power of cough sound was shifted to a higher frequency 

range compared with the control group.
46

 Another study
47

 found that cough duration, 

MFCC1 (Mel-frequency cepstral coefficient), and MFCC9 features were the most 

important acoustic features for classification of pulmonary disease state (i. e., bronchial 

asthma, COPD, chronic cough, healthy) and disease severity, defined based on a patient’s 

forced expiratory volume in the first second (FEV1) divided through the forced vital 

capacity (FVC). Similar to the speech/voice domain, various automatic approaches have 

proved to be effective at detecting pulmonary diseases from cough sounds
47,48

; good 

performance was even achieved when differentiating between two obstructive pulmonary 

diseases, namely bronchial asthma and COPD.
49

 Furthermore, using acoustic features 

extracted from cough sounds, Nemati and colleagues
47

 automatically classified the 

symptom severity of patients with pulmonary diseases. In another study
50

, cough sound 

analysis was used to predict spirometry results, i. e., FVC, FEV1, and FEV1/FVC, for 

patients with obstructive, restrictive, and combined obstructive-restrictive pulmonary 

diseases as well as healthy controls. Machine learning algorithms were also applied to 

distinguish pertussis coughs from croup and other coughs in children.
51

 Nemati and 

colleagues
52

 used a random forest algorithm to classify wet and dry coughs based on a 

comprehensive set of acoustic features and achieved an accuracy of 87%. Notably, the 

accuracy is calculated as the average of the sensitivity (88%) and specificity (86%) for 

classification of wet and dry cough sounds. Based on improved reverse MFCCs, Zhu and 

colleagues
53

 achieved an accuracy in the classification of wet and dry coughs of 93.66% 

using hidden Markov models. 

 

COVID-19 detection based on cough sounds. 

A set of studies have investigated detecting COVID-19 from cough sounds. Alsabek and 

colleagues
54

 compared MFCC acoustic features in cough, breathing, and voice samples of 

COVID-19 positive and COVID-19 negative individuals. They found a higher correlation 

between the COVID-19 positive group and the COVID-19 negative group for the voice 

samples than for the cough and breathing samples. Therefore, they concluded that the 

cough and breathing of a patient may be more suitable for detecting a COVID-19 

infection than his or her voice. Another study
55

 collected cough sounds from public 

media interviews with COVID-19 positive patients and analysed them for the number of 

peaks present in the energy spectrum and power ratio between the first two phases of 

each cough event. They found the majority of cough sounds to have a low power ratio 

and a high number of peaks, a characteristic pattern previously reported for wet coughs.
45

 

Brown and colleagues
11

 compared several hand-crafted features extracted from their 
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collected crowd-sourced cough sounds of COVID-19 positive and COVID-19 negative 

individuals. They found that coughs from COVID-19 positive individuals are longer in 

total duration, and have more pitch onsets, higher periods, and lower root mean square 

(RMS) energy. In contrast, their MFCC features have fewer outliers compared to those of 

COVID-19 negative individuals. 

The reported differences in acoustic features extracted from cough sounds of COVID-19 

positive and COVID-19 negative individuals are promising for the automatic detection of 

COVID-19. To process hand-crafted features, traditional machine learning methods such 

as support vector machines (SVMs) and extreme gradient boosting were utilised.
11,13,56

 

End-to-end deep learning models were developed to detect COVID-19 from the log 

spectrograms of cough sounds, and performed better than the linear SVM baseline.
57

 

Similarly, deep learning was also successfully used to process MFCCs
28,58,59

 or Mel 

spectrograms
60

 of cough sounds. The studies above have raised the potential and shown 

the effectiveness of machine learning for a cough sound-based detection of COVID-19. 

 

Contributions of this work. 

Due to advancements in signal processing and machine learning technology, today’s 

computers are able to ‘listen to’ sounds and identify acoustic patterns which often remain 

hidden for human listeners. The rapidly growing field of machine listening aims to teach 

computers to automatically process and evaluate audio content for the purpose of a wide 

range of acoustic detection/classification tasks. In the present study, we analyse acoustic 

differences in cough sounds produced by COVID-19 positive and COVID-19 negative 

individuals and further explore the feasibility of machine listening techniques to 

automatically detect COVID-19. On the one hand, we include COVID-19 positive and 

COVID-19 negative individuals irrespective of the presence or absence of any symptoms 

associated with COVID-19. On the other hand, this study aims to address the above-

mentioned challenges of symptom heterogeneity of COVID-19 positive patients 

including asymptomatic COVID-19 infections as well as similarities of symptoms to 

symptom characteristics of other diseases. Thus, we also investigate the isolated 

scenarios of COVID-19 positive and COVID-19 negative individuals all of which 

showing COVID-19-associated symptoms, and of COVID-19 positive and COVID-19 

negative individuals all of which not showing any COVID-19-associated symptoms. Data 

for our experiments is taken from the open COUGHVID database
61

 that provides 

27,500 cough recordings in conjunction with information about present symptoms. We 

analyse the acoustic features of the COMPUTATIONAL PARALINGUISTICS CHALLENGE 

(COMPARE) feature set that recently achieved good performance for COVID-19 detection 

from cough sounds.
13

 Furthermore, we train an effective (i.e., significantly better than the 

chance level) machine learning classifier based on the extracted COMPARE features. 

Finally, we investigate the contribution of the acoustic features extracted from the cough 

sounds to the COVID-19 status predictions of the machine learning classifier. 
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Materials and Methods 

In this study, we apply standard audio processing, statistics, and machine learning 

methodology to recorded cough sounds in order to address different tasks of interest. We 

set a special focus on explainability. Therefore, our analyses are based on established 

acoustic features initially extracted from the audio files. 

Databases and Tasks 

Data Pre-processing 

The dataset in our study is selected from the ongoing crowd-sourcing COUGHVID data 

collection.
61,62

 The COUGHVID database is collected via a web interface.
63

 Thus, the 

recordings can be collected with personal computers, laptops, or smartphones. All cough 

recordings are voluntarily produced by the participants. The participants receive safe 

coughing instructions on the web page, e. g., holding the smartphone at arm’s length and 

coughing into the crook of the elbow, putting the phone into a plastic zip bag. Each audio 

recording lasts up to 10 seconds. At the time of analysis for this study, the latest released 

COUGHVID database consists of 27,550 cough sound files. There are three statuses of a 

cough sample for each participant to self-report: healthy, symptomatic without COVID-

19 diagnosis, and COVID-19. There are 2,800 audio recordings annotated by experts, 

including a diagnosis, severity level, and whether or not audible health anomalies are 

present, such as dyspnea, and wheezing. As only a small proportion of the data have 

expert labels, the expert labels are not used in our work. Additionally, it is optional for 

each participant to report the geographic location (latitude, longitude), age, gender, and 

whether she/he has other pre-existing respiratory conditions and muscle pain/fever 

symptoms. Apart from the self-reported information, the data collectors trained an 

extreme gradient boosting (XGB) classifier on 121 cough sounds and 94 non-cough 

sounds to predict the probability of a recording containing cough sounds to exclude non-

cough recordings.
61

  

Since the participants with the symptomatic status did not explicitly report whether they 

were diagnosed with COVID-19, we only include the samples labelled as healthy (i. e., 

negative) and COVID-19 (i. e., positive) in the present study. Furthermore, we exclude 

samples with cough sound probabilities below or equal to 0.99 trying to ensure that each 

recording contains useful cough sounds. We note that no participant information was 

released in Orlandic and colleagues.
61

 We assume the audio files with the same location, 

age, and gender were recorded from the same participant. To better implement subject-

independent experiments, we aim to include only one cough sound file per participant. 

Therefore, the audio files with the same location, age, and gender are reduced into a 

single one by random selection. Moreover, all audio files containing noise and speech are 

manually excluded. The final dataset for this study contains 1,411 audio files (3.75 h) 

with a mean duration of 9.57 ± 3.30 s standard deviation (SD); the audio files are re-

sampled into 16 kHz. 
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For each status (i. e., COVID-19 negative, COVID-19 positive), four classes of clinical 

conditions are considered: no symptoms, respiratory symptoms only, muscle pain/fever 

symptoms only, and both aforementioned symptoms. For each symptom class, the total 

number of samples and their gender distributions are listed in Table 1. Similar to other 

COVID-19 related acoustic databases
13,64

, the sample numbers at the two statuses are 

imbalanced. Furthermore, the age distribution is examined across all symptom conditions 

(see Figure 1). 

 

 

Status Symptoms Total Gender (f/m) 

neg 

neg– no 996 293/703 

neg+ 

respiratory only 124 48/  76 

muscle pain/fever only 57 20/  37 

both symptoms 24 8/  16 

Σ 1 201 369/832 

pos 

pos– no 111 36/  75 

pos+ 

respiratory only 40 13/  27 

muscle pain/fever only 27 12/  15 

both symptoms 32 14/  18 

Σ 210 75/135 

Table 1. Total and gender-specific distribution of number of cough samples across 

COVID-19 status and symptom conditions. neg = COVID-19 negative, pos = COVID-19 

positive, f = female, m = male, + = symptomatic, – = asymptomatic. 

 
 

Task Definition 

This study has three major aims. Firstly, we aim to identify useful acoustic features for 

COVID-19 detection. To this end, we compare a set of acoustic features extracted from 

cough sounds of COVID-19 positive and COVID-19 negative individuals by means of 

conventional inferential statistics (Section: Acoustic Feature Extraction and Analysis). 

Secondly, we aim to demonstrate basic feasibility of automated COVID-19 detection 

based on cough sounds by applying machine listening methodology. Thirdly, we aim to 

investigate explainability of automatic COVID-19 detection by comparing feature 

relevance in the machine listening approach to feature relevance according to 

conventional group difference testing. To achieve these aims, we group the dataset based 

on the related COVID-19 and symptom status into: 

• samples of COVID-19 positive participants with respiratory and/or muscle 

pain/fever symptoms (pos+) 

• samples of COVID-19 positive participants without respiratory and/or muscle 

pain/fever symptoms (pos–) 

• samples of COVID-19 negative participants with respiratory and/or muscle 

pain/fever symptoms (neg+) 
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• samples of COVID-19 negative participants without respiratory and/or muscle 

pain/fever symptoms (neg–). 

 

Based on these subgroups, we implement three clinically meaningful tasks: 

• Task 1: COVID-19 positive (pos) vs COVID-19 negative (neg). This task 

addresses the three aims of this study by including all samples of COVID-19 

positive participants (210) and all samples of COVID-19 negative participants 

(1,201) irrespective of the presence or absence of symptoms. 

• Task 2: COVID-19 positive with symptoms (pos+) vs COVID-19 negative 

with symptoms (neg+). This task addresses the three aims of this study by 

including only samples of COVID-19 positive participants with respiratory and/or 

muscle pain/fever symptoms (99) and samples of COVID-19 negative participants 

with respiratory and/or muscle pain/fever symptoms (205). 

• Task 3: COVID-19 positive without symptoms (pos–) vs COVID-19 negative 

without symptoms (neg–). This task addresses the three aims of this study by 

including only samples of asymptomatic COVID-19 positive participants (111) 

and samples of asymptomatic COVID-19 negative participants (996). 

 

Apart from all three tasks, it is interesting to investigate the performance in these tasks 

under different genders or age ranges, as previous studies have shown gender and age 

differences in cough behaviour.
65,66

 As shown in Figure 1, the median of the age ranges is 

around 30, which is used to split the data into two age groups for each task. 

Acoustic Feature Extraction and Analysis 

Both instrumental phonetic analysis and traditional machine learning build upon acoustic 

features in the cough signals. We extract features from every audio recording by the 

open-source toolkit openSMILE
67

 according to the COMPARE feature set, which is the 

standard baseline feature set in the INTERSPEECH COMPARE series
68

 and has proven 

effective in COVID-19 detection from cough sounds.
13

 The COMPARE feature set 

consists of 6,373 features calculated by several supra-segmental functionals, e. g., mean 

value, over segmental low-level descriptors (LLDs), e. g., loudness (  mean (loudness) = 

mean of loudness). The LLDs, in the form of sequential features, are generated by 

analysing short-time segments, while the functionals focus on mapping the LLDs into a 

feature vector through computing statistical features inside each LLD and over multiple 

LLDs. The details of the COMPARE feature set can be found in Schuller and colleagues
68

. 

Using the Kolmogorov-Smirnov test, we determine at a 5% significance level that most 

class-specific feature distributions are unlikely to come from standard normal 

distributions. Thus, we apply the non-parametric two-sided Mann-Whitney U test to 

analyse the extracted features for distribution differences between the COVID-19 positive 

and COVID-19 negative samples in each task. We further compute the effect size r as the 

correlation coefficient calculated as the  -value divided by the square root 
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of the number of samples. Finally, we rank the features 

according to the effect size’s absolute value. Features showing 

at least a weak correlation effect (|r| ≥ .1) are considered 

relevant for the respective task. These features are referred to 

as top features. 

Automatic COVID-19 Detection 

Classifiers 

Based on all 6,373 extracted ComParE features, we apply machine learning methodology 

to study automatic COVID-19 detection in (three) binary classification tasks. Several 

classification approaches come into consideration, including linear models and non-linear 

models. A linear model learns a linear mapping between the inputs, i. e., the features, and 

the labels, i. e., the COVID-19 status; a non-linear model learns a non-linear mapping. In 

our work, a set of models are applied to detect COVID-19 from cough sounds. The 

employed linear models consist of linear regression models, i. e., least absolute shrinkage 

and selection operator (LASSO), Ridge, and ElasticNet, and a linear SVM model. Linear 

regression models, i. e., logistic regression in classification tasks, construct a linear model 

with different penalties, i. e., L1, L2, and a combination of L1 and L2, leading to the three 

models: LASSO, Ridge, and ElasticNet, respectively. The coefficients of the features in a 

linear regression model can be considered as the feature importance. Additionally, an 

SVM model is trained to find a hyperplane to maximise the margin between two classes. 

In linear SVM models, the coefficients of this hyperplane can be regarded as weights, 

whose absolute values indicate the relevance of each feature in the decision function – the 

larger the absolute value, the more important the respective feature.
69,70

 Apart from the 

linear models, the utilised non-linear models contain decision tree, random forest, and 

multilayer perceptron (MLP). A decision tree constructs a tree-like model by learning 

simple decision rules from the features, and a random forest is composed of a number of 

decision trees for performance improvement. Both decision tree and random forest are 

able to calculate the feature importance, which is computed as the total reduction of the 

criterion brought by each feature. A set of hidden layers in MLP leads to a highly non-

linear function between the inputs and the labels, which makes it challenging to interpret 

each feature’s role in the model. To learn the feature importance of neural networks (e. g., 

MLP), a set of methods have been proposed, such as deep learning important features
71

 

and causal explanation (CXPlain)
72

. 

The COMPARE features have shown effectiveness in various audio classification tasks, 

including pathological-speech-related disease detection
73

, on small to medium-sized 

datasets and represent one of the official machine learning pipelines of the 

INTERSPEECH COMPARE series.
13,68

 In this study, we reapply this well-proven feature 

set in combination with the aforementioned models to investigate the basic feasibility of 
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detecting COVID-19 from cough sounds. The whole COMPARE features extracted from 

the audio samples are used as the input of the machine learning models. 

Due to the limited size of the data, splitting the dataset into training, development, and 

test may lead to unreliable results. Hence, a five-fold cross validation strategy is used to 

generate the predictions over all audio samples. The whole dataset is equally split into 

five folds, each of which is used as the test set while the other four are employed as the 

training set. We combine all test sets in the 5-fold cross validation for performance 

evaluation; the final results are obtained on the combined dataset. The best 

hyperparameter is then selected corresponding to the best performance on the combined 

dataset. The linear regression models and the SVM model are optimised from multiple 

inverse values of regularization strength and complexity parameters C ∈ {10
-6

,10
-5

,10
-

4
,10

-3
,10

-2
,10

-1
,1} respectively. Random forest is optimised from tree numbers in 

{50,100,150,200,250,300}. The decision tree is learnt with the default parameters in 

scikit-learn.
74

 In the MLP model, three linear layers with the numbers of output neurons 

1,024, 256, and 2. To avoid overfitting problems, the first two layers are followed by 

dropout operations with the probabilities of setting a neuron as 0.2 and 0.3, respectively. 

Notably, balanced class weights are applied to each SVM model in order to mitigate the 

data imbalance problem. 

Evaluation Metrics 

We use the unweighted average recall (UAR) to evaluate the classification performance 

purposefully without considering the data imbalance characteristics. UAR is the average 

of recalls on all classes. Additionally, we report the area under the receiver operating 

characteristic curve (AUC-ROC) calculated based on the probability estimates of each 

audio sample being predicted as the COVID-19 positive class. The AUC score may be 

inconsistent with the UAR, since the probability of a prediction is calibrated by Platt 

scaling and fit by an additional cross-validation procedure on the training data. Finally, 

the confusion matrices for all three classification tasks are depicted to show the detailed 

performance. 

Explainability of Automatic COVID-19 Detection 

To provide an insight into the best performing linear classifier of each task, we export the 

respective model’s feature coefficients and calculate mean weights across all cross-

validation folds. We then rank the features for relevance, i. e., according to the absolute 

value of the mean feature weights. The explainability of automatic COVID-19 detection 

via linear classification models is quantified by comparing feature relevance in the linear 

classification model to feature relevance according to the effect size in the non-

parametric group difference test. 
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Results 

Feature Analysis 

The analysis of the extracted 6,373 COMPARE features yields a number of features 

relevant for the investigated tasks. For Task 1 (pos vs neg), we identify 220 top features, 

i. e., features with an absolute value of the effect size r greater than or equal to .1 in the 

non-parametric group difference test. For Task 2 (pos+ vs neg+) and Task 3 (pos– vs neg–

), 1,567 and 46 features are found relevant, respectively. Table 2 reveals the LLDs 

underlying the respective top features of each task. All LLD categories of the COMPARE 

set turn out to be relevant for the differentiation of 

symptomatic participants with and without COVID-19 (Task 2). 

However, when including asymptomatic participants (Task 1) or 

exclusively focusing on asymptomatic participants (Task 3), 

only selected energy-related, spectral, and voicing-related 

LLDs are found to differ at an absolute value of the effect size 

|r| ≥ .1. Figure 2 depicts the group-wise probability density 

estimates of the respective top one feature of each task, i. e., 

the mean inter-peak distance of the RMS energy with |r| ≥ .15 

for Task 1, the mean inter-peak distance of the fourth MFCC 

with |r| ≥ .26 for Task 2, and again the mean inter-peak distance 

of the RMS energy with |r| ≥ .15 for Task 3. Fourteen out of 6,373 

features are found to be jointly relevant for the differentiation 

between COVID-19 positive and COVID-19 negative in both 

symptomatic and asymptomatic participants (see Table 3). 

 

 

Group Energy-related LLDs (4) Task 1: 

pos vs neg 

Task 2: 

pos+ vs neg+ 

Task 3: 

pos– vs neg– 

Prosodic Auditory spectrum sum 

(loudness) 

√ √ √ 

Prosodic RASTA-filtered auditory 

spectrum sum 

√ √ × 

Prosodic RMS energy √ √ √ 

Prosodic zero-crossing rate × √ × 

Group Spectral LLDs (55) pos vs neg pos+ vs neg+ pos– vs neg– 

Cepstral MFCC 1–14 √ √ √ 

Spectral Psychoacoustic harmonicity √ √ √ 

Spectral Psychoacoustic sharpness × √ × 

Spectral Spectral centroid × √ × 
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Spectral Spectral energy 250–650 Hz, 1–

4 kHz 

√ √ √ 

Spectral Spectral entropy × √ × 

Spectral Spectral flux √ √ √ 

Spectral Spectral kurtosis √ √ × 

Spectral Spectral roll-off point 0.25, 0.50, 

0.75, 0.90 

√ √ × 

Spectral Spectral skewness × √ × 

Spectral Spectral slope √ √ √ 

Spectral Spectral variance × √ × 

Spectral RASTA-filtered auditory spectral 

band 1–26 

√ √ √ 

Group Voicing-related LLDs (6) pos vs neg pos+ vs neg+ pos– vs neg– 

Prosodic Fundamental frequency × √ × 

Quality HNR √ √ √ 

Quality Jitter (local and DDP) × √ × 

Quality Shimmer × √ × 

Quality Voicing probability × √ × 

Table 2. Categorisation of the 65 low-level descriptors (LLDs) of the COMPARE 

feature set and specification of involvement (√) or non-

involvement (×) in a top feature of the respective 

differentiation task (Task 1: pos vs neg, Task 2: pos+ vs neg+, and 

Task 3: pos– vs neg–). DDP = difference of differences of periods, HNR = harmonics-to-

noise ratio, MFCC = Mel-frequency cepstral coefficient, neg = COVID-19 negative, pos 

= COVID-19 positive, RASTA = relative spectral transform, RMS = root mean square, + 

= symptomatic, – = asymptomatic. 
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Mean rank Feature 

17 Flatness (Δ spectral energy 250–650 Hz) 

19 Flatness (spectral energy 250–650 Hz) 

27 Flatness (RMS energy) 

33 Flatness (spectralFlux) 

149 Mean inter-peak distance (RMS energy) 

194 Quartile 3 (HNR) 

195 IQR 1–3 (HNR) 

196 IQR 2–3 (HNR) 

202 Mean inter-peak distance (loudness) 

291 Mean inter-peak distance (spectral flux) 

410 Skewness (Δ RASTA-filtered auditory spectral band 12) 

635 Mean value of peaks (RMS energy) 

725 Mean inter-peak distance (spectral harmonicity) 

786 Mean value of peaks (loudness) 

Table 3. Joint top features between the pos+ vs neg+ (symptomatic COVID-19 positive vs 

symptomatic COVID-19 negative) and the pos– vs neg– (asymptomatic COVID-19 

positive vs asymptomatic COVID-19 negative) differentiation tasks listed according to 

their mean ranks rounded to integers. HNR = harmonics-to-noise ratio, IQR = 

interquartile range, RASTA = relative spectral transform, RMS = root mean square, Δ= 

first-order derivative. 

 

Automatic COVID-19 Detection 

The performance of the machine learning models for our three tasks is shown in Table 4. 

All best UARs for the three tasks significantly exceeded chance level (UAR: 0.5) in a 

one-tailed z-test (pos vs neg: p < 0.001; pos+ vs neg+: p < 0.001; and pos– vs neg–: p < 

0.001). Correspondingly, the confusion matrices of all three results are depicted in Figure 

3. All negative classes in the three tasks are classified with high true negative rates, while 

the true positive rates are around 0.5. Among the three tasks, for the task of pos– vs neg– 

we achieve the lowest UAR at the highest ratio of COVID-19 positive samples being 

incorrectly assigned to the negative class (see Figure 3). In Table 5, the performance on 

the data from the male participants is marginally better than that on data from the female 

participants. Furthermore, the performance for participants under or equal to 30 years is 

better for two of the three tasks than the performance for participants over 30 years.  

 

 

Task (1) pos vs neg (2) pos+ vs neg+ (3) pos– vs neg– 

Samples (#) 210/1,201 99/205 111/996 

Models UAR AUC UAR AUC UAR AUC 

Linear LASSO 0.586 0.625 0.573 0.547 0.536 0.549 

Ridge 0.632 0.671 0.653 0.641 0.558 0.594 
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ElasticNet 0.615 0.650 0.598 0.596 0.565 0.591 

SVM 0.610 0.642 0.601 0.609 0.563 0.617 

Non-linear Decision Tree 0.521 0.521 0.538 0.538 0.501 0.501 

Random Forest 0.500 0.651 0.544 0.606 0.500 0.600 

MLP 0.558 0.600 0.593 0.606 0.505 0.570 

Table 4. Classification performance in terms of unweighted average recall (UAR) and 

area under the receiver operating characteristic curve (AUC) for the three tasks. neg = 

COVID-19 negative, pos = COVID-19 positive, + = symptomatic, – = asymptomatic. 

 

Task 
Female Male 

UAR AUC UAR AUC 

(1) pos vs neg 0.602 0.620 0.601 0.636 

(2) pos+ vs neg+ 0.573 0.563 0.679 0.676 

(3) pos– vs neg– 0.517 0.508 0.604 0.584 

Task 
Age ≤ 30y Age > 30y 

UAR AUC UAR AUC 

(1) pos vs neg 0.604 0.604 0.590 0.609 

(2) pos+ vs neg+ 0.699 0.667 0.549 0.502 

(3) pos– vs neg– 0.500 0.496 0.551 0.562 

Table 5. Gender-wise and age group-wise classification performance in terms of 

unweighted average recall (UAR) and area under the receiver operating characteristic 

curve (AUC) for the three tasks. The first two tasks (pos vs neg and pos+ vs neg+) are 

achieved by the Ridge models, and the third one (pos– vs neg–) is achieved by the 

ElasticNet models. neg = COVID-19 negative, pos = COVID-19 positive, y = years, + = 

symptomatic, – = asymptomatic. 

 

 

Explainability of the COVID-19 Detection Model 

Our closer look at the weighting of acoustic features in the trained linear models reveals 

that identified top features according to the effect size in the non-parametric group 

difference test are also higher weighted in the respective best performing linear 

classification model for each task, i. e., Ridge for Tasks 1 and 2, and ElasticNet for Task 

3 (see Figure 4). The 220 top features of Task 1 have a mean rank of 1,496 ± 1,640 SD 

amongst the features ranked according to the absolute value of the Ridge weights. Forty-

nine out of the 220 top features are also among the first 220 Ridge weight ranked 

features. The 1,567 top features of Task 2 have a mean rank of 1,166 ± 1,084 SD 

amongst the Ridge weight ranked features. Herein, 1,173 out of the 1,567 top features are 

among the first 1,567 Ridge weight ranked features. The best performing model for Task 

3, i. e., ElasticNet, only builds upon 250 non-zero feature coefficients. The 250 features 
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with non-zero coefficients include 42 out of the 46 top features of Task 3. Eighteen out of 

the 46 top features are also among the first 46 ElasticNet weight ranked features. 

 

Discussion 

This study considers the presence/absence of COVID-19-associated symptoms when 

comparing acoustic features extracted from cough sounds produced by COVID-19 

positive and COVID-19 negative individuals and when applying machine listening 

technology to detect COVID-19 automatically. Although the classification performance 

of the SVM used in our study is significantly better than chance level, there are studies 

reporting better performances for COVID-19 detection based on cough sounds.
11,57

 

Brown and colleagues
11

 studied three classification tasks: COVID-19/non-COVID, 

COVID-19 with cough/non-COVID with cough, and COVID-19 with cough/non-COVID 

asthma cough. The second and the third tasks were based on cough sounds and breath 

sounds, respectively, whereas the first task was based on both cough and breath sounds. 

All three tasks achieved over 80%, higher than those in our three tasks, which is possibly 

caused by two reasons. Firstly, the number of users in Brown and colleagues
11

 is quite 

small and potentially less representative
75

 as compared to our study: The number of users 

in Brown and colleagues
11

 for each task is 62/220, 23/29, and 23/18, respectively, 

whereas the task-wise numbers of samples in our study are 210/1,201, 99/205, and 

111/996. Secondly, the first and third tasks utilised breath sounds, which perhaps provide 

some discriminative features. Coppock and colleagues
57

 trained deep neural networks on 

the log spectrograms of both cough and breath sounds from the same crowd-sourced 

dataset as in Brown and colleagues
11

 and achieved better results on the three tasks 

compared with the baseline, where SVMs processed the COMPARE features. The AUCs 

in two of the three tasks are above 82% and the UARs are above 76%. Similarly, the 

better performance of this work could be caused by the limited number of participants 

(26/245, 23/19, and 62/293) and features from breathing sounds. In addition, an extra task 

of distinguishing COVID-19 and healthy participants without symptoms was set in 

Coppock and colleagues
57

. Nevertheless, the performance on COVID-19 positive 

samples without symptoms was not reported independently. In contrast, such 

performance is evaluated in our Task 3, which is crucial for preventing COVID-19 

transmission. The found minor gender and age differences in detection performance are 

most probably related to imbalances in the dataset. There are more than twice as many 

data samples from male than from female participants. With regard to age, it has to be 

considered that with increasing age the likelihood of chronic lung and voice 

diseases/problems also increases which might to some extent mask symptoms caused by 

an acute respiratory disease.  

Our study reveals several acoustic peculiarities in COVID-19. As shown in Table 2, a set 

of LLDs could be helpful for differentiating COVID-19 positive individuals from 

COVID-19 negative ones. Across the three tasks, there are common LLDs of high 
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relevance according to the effect size in the non-parametric group difference test, namely 

loudness, RMS energy, MFCCs, psychoacoustic harmonicity, spectral energy, spectral 

flux, spectral slope, RASTA-filtered auditory spectral bands, and HNR. Differences in 

RMS energy and MFCC-related features between the coughs of COVID-19 positive and 

COVID-19 negative individuals are also reported in Brown and colleagues
11

. In contrast 

to Tasks 1 and 3, i.e., tasks including asymptomatic participants, in our Task 2 all LLD 

categories of the COMPARE set are found to bear relevant acoustic information to 

distinguish between the two groups. This might be due to an increased acoustic 

variability of symptomatic coughs (as compared to asymptomatic coughs) being reflected 

in a wider range of acoustic parameters. In other words, the difference between coughs of 

symptomatic individuals with COVID-19 and individuals with symptoms caused by any 

other disease acoustically manifests more manifold than the difference between COVID-

19-related and non-COVID-related coughs in a sample that also or exclusively contains 

asymptomatic individuals. However, the lower number of available cough samples for 

Task 2 as compared to the other tasks might also cause a biased distribution of feature 

values. The analysed feature weights within the linear classification models show 

consistency with the features’ effect sizes, i. e., most top features according to the effect 

size also have higher weights in the linear classification models. This is a relevant finding 

towards the explainability of the applied machine learning approach. As indicated in 

Table 2, there are less top LLDs for Task 3. That might be because LASSO trends to use 

less features due to the nature of L1 regularisation. As a combination of LASSO and 

Ridge, ElasticNet is based on less features compared with Ridge. 

As both speech and cough sounds are produced by the respiratory system, we herein 

compare and analyse peculiar acoustic parameters of patient’s speech and cough sounds. 

When analysing the acoustic peculiarities of patients with diseases that affect the 

anatomical correlates of speech production, the related studies reported that the peculiar 

acoustic parameters of the patients’ speech include fundamental frequency (fo), vowel 

formants, jitter, shimmer, HNR, and maximum phonation time (MPT).
15,16,18,19

 

Additionally, the peculiar acoustic parameters of voice samples of COVID-19 positive 

and COVID-19 negative participants were reported to include fo standard deviation, jitter, 

shimmer, HNR, the difference between the first two harmonic amplitudes (H1–H2), 

MPT, cepstral peak prominence
20

, mean voiced segment length, and the number of 

voiced segments per second
21

. We can find that there are common acoustic peculiarities 

between the voice of COVID-19 patients and patients with some other diseases: fo-related 

features, jitter, shimmer, HNR, and MPT. In Table 2, several acoustic LLDs of cough 

sounds have shown potential for distinguishing COVID-19 positive and COVID-19 

negative individuals. Particularly, fo, jitter, shimmer, and HNR have high effective sizes 

in Task 2, i. e., pos+ vs neg+. The above findings indicate that there are similarities in 

acoustic peculiarities of speech and cough sounds of COVID-19 patients. 
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Limitations. 

The classification performance reported in our study needs to be interpreted in the light of 

the well-known challenges of data collection via crowdsourcing, including data validity, 

data quality, and participant selection bias.
76-78

 The COUGHVID database does not allow 

to verify the COVID-19 status of the participants, as the participants were not asked to 

provide a copy or confirmation of their positive or negative COVID-19 test. Another 

limitation is that the participants have not been instructed to record the data during a 

defined time window after the positive or negative COVID-19 test. Therefore, it is 

possible that some participants recorded their cough at the beginning of their infection, 

whereas others did the recording towards the end of their infection. Interestingly, the 

disease stage of COVID-19 was found to influence the nature of the cough (shifting from 

dry at an early disease stage to more wet at a later disease stage), concomitantly affecting 

acoustic parameters of the cough.
55

 Moreover, the participants were asked to answer 

whether they had respiratory and/or muscle/pain symptoms, but no information on the 

severity of their symptoms is available. Although the safe recording instructions provided 

on the web page are reasonable with regard to the transmission of the virus, the 

suggestion to put the smartphone into a plastic zip bag while recording is suboptimal 

from an acoustic perspective. Another limitation of our study is that the participants did 

not receive clear instructions on how to cough, e. g., how often, or whether to take a 

breath between two coughs. Various audio recording devices and settings are inherent for 

crowdsourcing; we expect no bias towards one of the participant groups concerning the 

use of recording devices. We reduced files with the same location, age, and gender into a 

single one to promote that only one cough sound file per participant is included, but we 

cannot guarantee that our dataset has only one sample per participant or that we have not 

mistakenly merged recordings from various individuals living in the same household. 

Our target in this work was to explore the hand-crafted features’ importance for 

automatic COVID-19 detection. Some classifiers like k-nearest neighbours were not 

utilised as it might be difficult for them to output the feature coefficients/importance. 

Other approaches, such as transfer learning and end-to-end deep learning, were not used, 

as their inputs are either the original audio waves or simple time-frequency 

representations. Therefore, it is challenging to explain the features’ contribution with 

these methods. Additionally, we decided to apply a cross-validation schema due to the 

small dataset size, thus, testing was not entirely independent from the training as hyper-

parameters were optimised on the test partitions. 

We decided to employ just a single dataset rather than multiple datasets in this study. We 

selected the COUGHVID dataset because it contains enough data and sufficient meta 

information to analyse the effects of COVID-19-related symptoms on acoustic 

parameters and automatic COVID-19 detection. Coswara
79

 was also considered at the 

start of the experiments. However, the symptom information is not complete and well-

organised for our study to analyse the effect of symptoms for detecting COVID-19. We 
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also considered well-structured data, including University of Cambridge dataset collected 

by the COVID-19 Sounds app
11

, diagnosis of COVID-19 using acoustics (DiCOVA) 

2021 challenge data
64

, and INTERSPEECH COMPARE 2021 challenge data
13

. However, 

these databases did not provide (sufficient) symptom information. 

 

Conclusions. 

In this study, we acoustically analysed cough sounds and applied machine listening 

methodology to automatically detect COVID-19 on a subset of the COUGHVID database 

(1,411 cough samples; COVID-19 positive/negative: 210/1,201). Firstly, the acoustic 

correlates of COVID-19 cough sounds were analysed by means of conventional statistical 

tools based on the COMPARE set containing 6,373 acoustic higher-level features. 

Secondly, machine learning models were trained to automatically detect COVID-19 and 

evaluate the features’ contribution to the COVID-19 status predictions. A number of 

acoustic parameters of cough sounds, e. g., statistical functionals of the root mean square 

energy and Mel-frequency cepstral coefficients, were found to be relevant for 

distinguishing between COVID-19 positive and COVID-19 negative cough samples. 

Among several linear and non-linear automatic COVID-19 detection models investigated 

in this work, Ridge linear regression achieved a UAR of 0.632 for distinguishing between 

COVID-19 positive and COVID-19 negative individuals irrespective of the presence or 

absence of any symptoms and, thus, performed significantly better than chance level. 

With regard to explainability, the best performing machine learning models were found 

to have put higher weight on acoustic features that yielded higher effects in conventional 

group difference testing. 

 

Outlook. 

Automatic COVID-19 detection from cough sounds can be helpful for the early screening 

of COVID-19 infections, saving time and resources for clinics and test centres. 

Specifically, machine listening applications distinguishing between cough samples of 

symptomatic COVID-19 positive individuals and those of individuals with other diseases 

could advise the patient to stay at home and contact her/his doctor by phone before 

entering clinics/hospitals to meet medical professionals. This would help to prevent the 

spread of the virus in an especially vulnerable population. By distinguishing between 

cough samples produced by asymptomatic COVID-19 positive and COVID-19 negative 

individuals, an easy-to-apply instrument, such as a mobile application and a hand-held 

testing device, could help to prevent the unconscious transmission of the virus from 

asymptomatic COVID-19 positive individuals. 

From our point of view, it is highly important for future studies to specify the symptoms 

more clearly (e. g., severity estimates, onset time of symptoms), to include additional 

aspects potentially affecting the cough sound, such as smoking and vocal cord 

dysfunctions, and to differentiate in the COVID-19 negative group between participants 
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with chronic respiratory diseases such as asthma or COPD and patients with a temporary 

infection such as the flu. Furthermore, it would be interesting for future studies to 

acoustically analyse the cough phases separately, as previous studies reported certain 

phase-specific acoustic peculiarities for wet and dry coughs.
44,45

 Moreover, it will be 

encouraging to consider more sound types (e. g., breathing and speech) and evaluate the 

physical and/or mental status of COVID-19 positive patients (e. g., anxiety) from speech 

for comprehensive COVID-19 detection and status monitoring applications.
80,81

 

From the perspective of machine learning, feature selection methods will be investigated 

to extract useful features only. Deep learning models shall be explored for better 

performance due to their strong capability of extracting highly abstract representations. 

Particularly, when developing real-life applications for COVID-19 detection, it will be 

more efficient to skip the feature extraction procedure through training an end-to-end 

deep neural network with the input of audio signals or time-frequency representations. In 

addition to explaining linear classification models by analysing the weights of the 

acoustic features in this study, explaining deep neural networks along the dimension of 

time frame or frequency will need to be investigated to provide a detailed interpretation 

for each specific cough sound, i. e., when and at which frequency band a cough sound 

shows COVID-19-specific acoustic peculiarities. For this purpose, a set of approaches 

could be employed, e. g., local interpretable model-agnostic explanations
82

, shapley 

additive explanations (SHAP)
83

, and attention mechanisms
84,85

. 
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Figure 1. The age distribution of the 1,411 cough samples of the dataset for COVID-19 

neg(ative) or (pos)itive. Mus.: muscle, fev.: fever. 

 

 
Figure 2. Comparison between part A: COVID-19 positive (pos) and COVID-19 negative 

(neg) participants (Task 1), part B: symptomatic COVID-19 positive (pos+) and symptomatic 

COVID-19 negative (neg+) participants (Task 2), and part C: asymptomatic COVID-19 

positive (pos–) and asymptomatic COVID-19 negative (neg–) participants (Task 3) by means 

of the probability density estimate (PDE) of the top one feature of the respective 

differentiation task. MFCC = Mel-frequency cepstral coefficient, RMS = root mean square, * 

= real measurement unit does not exist as feature values refer to the amplitude of the digital 

audio signal. 
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Figure 3. Confusion matrices for the three classification tasks complementary to the best 

results given in Table 4. Part A: (Task 1) pos vs neg, part B: (Task 2) pos+ vs neg+, part C: 

(Task 3) pos– vs neg–. neg = COVID-19 negative, pos = COVID-19 positive, UAR = 

unweighted average recall, + = symptomatic, – = asymptomatic. 

 

 
Figure 4. Feature ranking according to the absolute value of Ridge feature weights for part A: 

(Task 1) pos vs neg and part B: (Task 2) pos+ vs neg+, as well as of ElasticNet feature weights 

for part C: (Task 3) pos– vs neg–. Green bars indicate top features according to the effect size 

in the non-parametric group difference test. A different x-axis scaling is used for (Task 3) as 

the ElasticNet model only builds upon 250 non-zero feature coefficients. 

 
 
 
 

                  


